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Generating spin turbulence through nonlinear excitation in liquid-state NMR
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a b s t r a c t

Chaotic dynamics of a water magnetization in a 600 MHz NMR spectrometer was generated by a radia-
tion damping-based electronic feedback. Erratic induction signal was observed for several tens of seconds.
The analysis of the data shows that this chaotic behaviour can be ascribed to spin turbulence in the sam-
ple and that a simpler model based on the three-dimensional Bloch equations modified to include a feed-
back field may not account for the experimental data.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The dynamics of a system of uncoupled spins can be described
in terms of the classical Bloch equations or alternatively within the
framework of quantum mechanics by the use of the Liouville equa-
tion for the density operator [1]. Both approaches cover most cases
of interest and provide extremely powerful tools for understanding
and predicting spin dynamics. However, at high magnetic fields,
radiation damping, which originates from the interaction between
the NMR circuitry and the spins, is no longer negligible and this
conventional description must be modified. The practical conse-
quences of radiation damping are well known. It can alter the
dynamics of the water magnetization and lead to poor suppression
of the water signal [2]. It is also responsible for the occurence of
multiquantum-like peaks in various 2D experiments [3–5], and
has been recently proposed as a mechanism of contrast enhance-
ment in magnetic resonance imaging [6].

In another context, typical nonlinear behaviour of the magneti-
zation can be generated by using a radiation damping-based elec-
tronic feedback device to modulate and control radiation damping.
Thus, inverting the effects of the radiation damping field was re-
cently demonstrated to generate self-sustained periodic maser
pulses [7]. Moreover, the possible appearance of a chaotic behav-
iour of the magnetization in this context was suggested by numer-
ical simulations of the nonlinear Bloch equations (NLBE), obtained
from the Bloch equations by adding the relevant feedback field [8].
In addition, recent observations illustrate the potential complexity
ll rights reserved.
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of the magnetization dynamics in high field NMR spectrometers
caused by demagnetizating field effects and/or radiation damping
on water magnetization [9] or hyperpolarized spins [10]. In this pa-
per, we present our observations of stationary chaotic behaviour of
a large magnetization in high resolution liquid state NMR, through
back-action from the probe, and that can be interpreted in terms of
spin turbulence.

2. Results

Experiments were performed on a Bruker DRX600 MHz spec-
trometer equipped with the Radiation Damping Control Unit
(RDCU) hardware based on the authors’ prototype and a high Q
TXI probe with Oz gradient facility. Nonlinear excitation of the
magnetization was achieved by feeding into the probe a radiofre-
quency field obtained from a fraction of the residual water signal,
with appropriate phase and gain adjustment, as detailed elsewhere
[11,12]. After optimum tuning and matching of the probe, ampli-
tude and phase of the RDCU were adjusted for cancellation of radi-
ation damping [12]. The sample consisted of 90% H2O and 10% D2O.
A typical experiment started with a hard pulse to create in-plane
magnetization. It was then followed by signal acquisition during
which feedback excitation was active. The duration of the aquisi-
tion was significantly longer (32 s) than usual liquid state NMR
observation times, which allowed to capture typical nonlinear
behaviour originating from the interplay between nonlinear exci-
tation and water spin–lattice relaxation [7]. The radiation damping
time was estimated by measuring the linewidths of the water
resonance after a small angle pulse, with the probe tuned and
detuned, respectively. It was found to be on the order of
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sRD � 27 ms. With this experimental setup, induction signals
exhibited self-sustained maser pulses for sufficient feedback gains.
In Fig. 1(a), the feedback power used was 10 dB stronger than that
needed for the suppression of radiation damping and the feedback
phase was adjusted for the suppression of radiation damping
(w ¼ p=2 in Eq. (4) below). For higher feedback gains, i.e., for more
intense feedback fields, erratic motion could be generated. Signals
obtained for three increasing values of the feedback gain are repre-
sented in Fig. 1(a)–(c)), and illustrate the transition from regular to
chaotic regime of the magnetization. The FID trace on the upper
part of the figure shows the regular appearance of maser bursts.
These bursts have identical amplitudes and are separated by a
nearly constant time interval of several seconds. Alternatively, for
increasing feedback field intensities, the observed signal exhibits
irregular bursts of magnetization, with different profiles and occur-
ring at irregularly spaced intervals. Note that the intensities of
these maser bursts are significantly lower than in the case of reg-
ular motion, which is due to the saturation of the magnetization
by a larger rf feedback rf power. It is seen that the further increase
of the FB field induces even more irregularities of the bursts, both
in terms of shaps and delays of occurence. This chaotic process
goes on through the total duration of the observation window
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Fig. 1. Transition to chaotic motion of the detected signal. In (a), the motion is
regular, exhibiting self-sustained oscillations; in (b), bursts of chaotic motion are
superimposed to a background regular behaviour; while in (c) completely irregular
motion is observed.
and it is therefore likely that the magnetization has reached a stea-
dy state.

2.1. Embedding measurements

In order to get some insight into the dynamics, an analysis of
the steady state solution of the observed signal, considered as a
dynamical system, was performed. In mathematical terms, the
aim is to extract information about the manifold on which the
magnetization vector evolves at long times. In usual situations,
where the magnetization relaxes to equilibrium, the so-called
attractor is a fixed point, namely, the North pole of the Bloch
sphere. Alternatively, for a nutation experiment where relaxation
is neglected, the steady state is a closed orbit, therefore of dimen-
sion one. In the case of chaotic behaviour, the attractor does not
have an integer dimension (for general references, see for instance
[13–15]). Thus, one of the ways to characterize an attractor is to
estimate its correlation dimension D2 from the observed signal
[16], defined as:

D2 ¼ lim
r!0

log CðrÞ= log r; ð1Þ

where the correlation integral CðrÞ of an n-dimensional dynamical
system is [16]:

CðrÞ ¼ lim
N!1

CðN; rÞ ¼ lim
N!1

1
NðN � 1Þ

XN

i–j¼1

Hðr � kxðnÞi � xðnÞj kÞ; ð2Þ

In Eq. (2), H is the Heaviside step function and N is the number of
points in the time series. The quantity CðrÞ represents the probabil-
ity that two points xðnÞi and xðnÞj on the attractor are separated by a
distance smaller than r. It can be shown that the dimension of the
attractor of the original dynamical system can be calculated by
using the n�dimensional delay coordinate representation of the ob-
served NMR signal [13,17,18]: fMðtÞ;Mðt � sÞ; . . . ;Mðt � ðn� 1ÞsÞg,
where MðtÞ is a function of the observed signal, the magnitude of
the transverse magnetization in this case. The integer n is called
the embedding dimension. Then, it can be shown [19] that the esti-
mated dimension DðnÞ2 for an embedding dimension n is DðnÞ2 ¼ n for
n < D2 (since in this case the attractor is projected onto a space of
lower dimension) and reaches a constant value DðnÞ2 ¼ D2 for
n P ceilðD2Þ.

We used this approach to estimate the correlation dimension of
the chaotic attractor of the magnetization from experimental mea-
surements. Calculations were carried out with the TISEAN software
[20]. As this estimate may be flawed by various sources of errors
analyzed at length in the literature [14], caution need be exercised
when computing and interpreting results. Thus, the maximum
dimension that can be calculated from a time series depends on
the number of data points N, [21,22] which in our case was on
the order of N � 4:104. We used the criterion proposed by Ruelle
and Eckmann [22] that states that the maximum dimension that
can be extracted from N data points is:

Dmax
2 ¼ 2 log N

logð1=qÞ ð3Þ

where q ¼ r=R is the ratio of a typical value r in the scaling region, at
which the slope is evaluated, and R is the diameter of the recon-
structed attractor. Moreover, the value of r was taken as the mid-
point between the upper and lower bounds in the scaling region:
[23] r ¼ ðrmax þ rminÞ=2 and the minimal length for slope determina-
tion was such that log rmax � log rmin P 1:6, which corresponds to a
fivefold ratio in r.

Local slopes were calculated across the linear region [24], the
mean and standard deviations of which provided the values
hDðnÞ2 i and rDðnÞ2

. Results are depicted in Fig. 2, where the values of
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Fig. 3. Simulated Mx (black) and Mz (red) components of the magnetization for
increasing values G of the feedback gain, illustrating the transition from a regular
evolution made of self-sustained maser pulses (top) to a chaotic dynamics reflecting
spin turbulence (center and bottom). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this paper.)
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Fig. 2. Estimated correlation dimensions obtained from the data of Fig. 1 are
depicted. The solid line corresponds to hDðnÞ2 i, the correlation dimension for
embedding dimension n. In addition, the maximum acceptable values of D2

compatible with the data used are plotted as open squares (DðnÞmax).
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the dimensions hDðnÞ2 i (solid line and filled squares) are plotted to-
gether with the maximum significant value DðnÞmax (open squares). It
is seen that for embedding dimensions as large as n ¼ 5, the values
hDðnÞ2 i lie below the maximum achievable dimension. Therefore, the
present analysis of the experimental data provides unambiguous
evidence that the attractor dimension is strictly larger than
D2 ¼ 4. However, no definite conclusion can be drawn for higher
embedding dimensions, so that the size of the attractor could not
be determined. This is in itself an interesting result, which demon-
strates that the kind of dynamics generated by the setup cannot be
interpreted in terms of the conventional three dimensional Bloch
equations modified to account for the presence of the feedback
field.

3. Discussion and conclusion

In order to interpret the presence of the erratic behaviour of the
magnetization that was observed experimentally, we used a
dynamical model that includes both feedback field effects and B0

inhomogeneity. In this model, inhomogeneities of the static field
are not accounted for by a simple inhomogeneous line broadening.
Rather, the magnetization is explicitly decomposed in isochromats
lðdxÞ, each of which evolves at a frequency determined by a
Lorentzian resonance spread defined by hðdxÞ ¼ ð1=pÞ�
Ry2=½R

y2
2 þ dx2�, where the inhomogeneous linewidth R�2 is given

by R�2 ¼ R2 þ Ry2, and R2 is the homogeneous transverse relaxation
rate of the spins. Thus, each magnetization component lðdxÞ
evolving at the Larmor frequency offset dx undergoes the cumula-
tive action of the individual feedback fields generated by the spins
associated with all the isochromats in the sample. Each of the
lðdxÞ is coupled to the probe such that it generates a back action
field:

BFBðdxÞ ¼ GltðdxÞe�iw; ð4Þ

where ltðdxÞ ¼ lxðdxÞ þ i lyðdxÞ. The coupling parameters G
and w are identical for all the isochromats and in the case of
radiation damping, they are equal to w ¼ �p=2 and G ¼ l0gQ=2
in SI units, where l0 is the vacuum permitivity and Q is the
quality factor of the probe. In the absence of an applied radiofre-
quency B1 field, the evolution equations in the rotating frame are:
[7]
d
dt

lxðdxÞ ¼ dx lyðdxÞ � lzðdxÞXFB;y � R2lxðdxÞ

d
dt

lyðdxÞ ¼ �dx lxðdxÞ þ lzðdxÞXFB;x � R2lyðdxÞ

d
dt

lzðdxÞ ¼ lxðdxÞXFB;y � lyðdxÞXFB;x � R1ðlzðdxÞ � l0ðdxÞÞ

8>>>>>><
>>>>>>:

ð5Þ

In Eq. (5), one has XFB ¼ cBFB and:

BFB ¼ G

sinw
R1
�1 lyðdxÞdðdxÞ þ cosw

R1
�1 lxðdxÞdðdxÞ

�sinw
R1
�1 lxðdxÞdðdxÞ þ cosw

R1
�1 lyðdxÞdðdxÞ

0

0
B@

1
CA:

ð6Þ

Eq. (5) served as the basis of the interpretation of self-sustained ma-
ser pulses observed previously [7,25].

This representation is similar to the one appearing in the work
of Augustine and Hahn [26], generalized here to the case of a feed-
back field of arbitrary phase and gain. Note that writing Eq. (6) one
has implicitly assumed that the coupling of all the isochromats to
the probe are identical. This can be expected for feedback fields lar-
ger than the spread in Larmor frequencies of the water spins,
which is likely in our experiments where the feedback field was
typically larger than the actual radiation damping field by a factor
of �100.

In the quest for an interpretation of the observed chaotic FIDs,
we simulated the evolution of a magnetization initially close to
inversion (after a preparation pulse with a flip angle 0:95p), for dif-
ferent values of the feedback field coupling, or gain, G, whilst the
phase w was set to þp=2, which permits to suppress or invert
the radiation damping field. To avoid artefactual periodicity of
the discretized version of Eqs. (5) and (6), simulations were per-
formed with a frequency step dxi such that dx� tmax < 1, where
tmax � 27 s is the duration of the simulation. This implied the use
of 701 isochromats in the calculations. Note that the number of
isochromats did not influence the outcome of the simulation, as
long as the above condition was fulfilled. Relaxation rates were
set to R1 ¼ 1=3:3 s�1, R2 ¼ 1=2 s�1, Ry2 ¼ 1=0:14 s�1.

Calculations were performed using the Scilab software [27]. Re-
sults presented in Fig. 3 illustrate the transition to chaos of the
magnetization dynamics. Indeed, for moderate values of G, one ob-
serves the known self-sustained maser pulses mentioned above,
whereas for higher gain values, one observes bursts of in-plane
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magnetization that occur at irregular time intervals and have erra-
tic shapes. With further increase of the gain (bottom), the FID be-
comes persistently chaotic in time. Thus, numerical simulations
based on the model explicited by Eq. (5) are able to qualitatively
reproduce our experimental observations. Of course, since dipolar
field effects are not included in the model, one cannot expect to
reproduce the details of the experimental time signals, and addi-
tional features may well be present, such as a supplementary fre-
quency shift [28] of the maser pulses that adds to the one
generated by the feedback field.

Recent work published in the literature have suggested the pos-
sibility to observe chaotic dynamics of the water magnetization in
liquid state high-field NMR [9]. These effects were interpreted as
the result of the interplay between radiation damping and the
dipolar demagnetizing field. In that case, instability occurs tran-
siently, and at time scales much shorter than the relaxation time
T1. More recently, Marion et al. [10] could observe stationary cha-
otic FIDs of dissolved hyperpolarized Xenon. Although both
demagnetizing field effects and radiation damping were shown
to be present, the experiments could nevertheless not be clearly
interpreted in terms of these phenomena.

In the case in hand, combining experiments with numerical
simulations that include a feedback field only and disregard dipo-
lar field effects enables us to propose the model of the chaotic
dynamics given by Eq. (5). Indeed, a simpler model based on the
three dimensional nonlinear Bloch equations is ruled out by the
fact that it would necessarily imply the existence of an attractor
of dimension strictly smaller than 3 [29]. This is in contradiction
with our analysis of the data, which showed that the attractor
dimension was larger than 4. Therefore, our findings suggest that
field inhomogeneities introduce nonlocality by making the dynam-
ical system high (infinite) dimensional, which gives rise to spin
turbulence.
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